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A generalized lifting-line theory is developed in inviscid, incompressible, steady flow 
for curved, swept wings of large aspect ratio. It is shown in this paper that  by using 
the integral formulation of the problem instead of the partial differential equation 
formulation, it is possible to circumvent the algebraic complications encountered by 
the previous approaches using the method of the matched asymptotic expansions. At 
each approximation order the problem is reduced to inverting a classical Carleman 
type integral equation. The asymptotic solution in terms of circulation is found up 
to A-‘ and A-lln(4-l). It is very convenient for illustrating the major three- 
dimensional effects induced on the flow by curvature and yaw angle. The concept of 
the finite part integrals, introduced by Hadamard (1932), is shown to be very useful 
for handling elegantly singularities like l/zlxl or l/lzl which occur in the course of our 
developments. Comparisons of the new, simple approach with lifting-surface theories 
reveal excellent agreements in terms of circulation. Furthermore, a consistent 
calculation of the three components of the total force acting on the wing is done in 
the lifting-line context without re-introducing the inner geometry of the wing. 

1. Introduction 
The Prandtl lifting line is the most famous and simple theory on three-dimensional 

wings in inviscid and incompressible flow (see Prandtl 1921). This theory is widely 
taught and used either to illustrate the major incompressible effects on wings or to  
introduce numerical methods like Vortex Lattice Methods (VLM) or panel methods. 
Nevertheless, the main restrictions of this model are that the wing has to be straight 
and has to have no yaw angle. These restrictions limit to  a great extent the use of the 
lifting-line concept in modern applications. 

Several attempts have been made to overcome these restrictions. Weissinger 
( 1947) proposed a solution halfway between the lifting-line and the lifting-surface 
concepts. He employed loaded lines located at the quarter-chord line and satisfied 
the boundary condition at the three-quarter-chord line. This technique has been very 
successful for predicting spanwise loading distribution on straight, swept-back, and 
swept-forward wings of moderate t o  large aspect ratio ; this method, however, cannot 
predict efficiently the induced drag, and is no longer valid when curvature occurs. 
Indeed, this technique may be seen as an early embryo of VLM. 

Another way to  address the problem is to use the Matched Asymptotic Expansion 
method (MAE). Van Dyke (1964) showed that the MAE method was relevant for 
treating Prandtl’s lifting-line problem. He divided the flow domain into outer and 
inner domains. I n  the outer one, the lengthscale is the wing span, and the wing is 
modelled by a loaded line. In the inner domain, the lengthscaIe is the mean chord 
length, and the general problem degenerates into a series of two-dimensional 
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problems. The global solution is found by matching the inner and outer expansions 
of the velocity potential. At about the same time as Van Dyke was proposing his new 
concept of the unswept lifting line, Thurber (1965) applied the asymptotic technique 
to curved wings of high aspect ratio. He was the first to show that the logarithm of 
the aspect ratio appears a t  the second order of the expansion rather than at the third 
order, as is the case for straight wings. He also pointed out the existence of an 
effective angle of attack, despite the presence of the logarithmic singularity. 
However, his presentation was rather lengthy and somewhat cumbersome. The final 
formulae he gave for the circulation were incorrect and so complicated that almost 
no physical interpretation was possible. A decade later, Cheng (1978) successfully re- 
applied the asymptotic technique to straight swept wings. Cheng & Murillo (1984) 
generalized the method to curved wings in unsteady flow. In  this particular case, the 
MAE approach involves a great deal of algebra. The main difficulty comes from the 
inner solution, which is expressed in the local curvilinear coordinate system related 
to the lifting line. In  this system of coordinates, the Laplace equation is no longer 
homogeneous and a particular solution of this equation is required at the second 
order of approximation. The calculations are even more cumbersome if the wing is 
curved (see Cheng & Murillo 1984). 

The algebraic difficulties encountered by the MAE technique come from the desire 
to solve the problem from its Partial Differential Equation formulation (PDE). 
Indeed, when the mean line of the wing is straight and perpendicular to the flow, 
Kida & Miyai (1978) found a nice alternative to the MAE approach. They used the 
integral formulation of the problem and showed that the integral equation could be 
asymptotically inverted. They also proved that their solution was identical to that 
obtained by the MAE method. Their approach is attractive for it bypasses the 
non-homogeneous Laplace equation problems. In the present paper, we generalize 
Kida & Miyai’s technique to the case of a curved wing of high aspect ratio. By using 
adequate mathematical tools we obtain simple, general results from which many 
physical interpretations can be made. To illustrate these results, comparisons are 
made with lifting-surface theories applied on parabolic wings and on straight, yawed, 
elliptical wings. 

Among the mathematical tools that will be used is the concept of the finite part 
integral, as introduced by Hadamard (1932). This concept is useful for elegantly 
handling integrals with very singular kernels such as the one which occurs in the 
integral giving the velocity induced by a sheet of dipoles. This concept generalizes 
the Cauchy principal value which is normally used when the kernel behaves like 
1/x. A resume of the relevant aspects of Hadamard’s finite-part theory is given in 
Appendix B. 

The set of forces acting on the wing are evaluated in the last section of this paper. 
It is shown that a consistent set of forces can be recovered within the MAE context 
by applying Joukowski’s rule in the outer domain. The downwash induced on the 
lifting line in the outer model produces the same drag as that which may be recovered 
in the Trefftz plane. However, a side force generally appears. This inconsistency is 
overcome by introducing a fictitious force in the wake which can be interpreted as 
the force which would occur on the bound vortices if the wing were correctly 
modelled as a lifting surface. 
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2. The formulation of the problem 
Let us consider a wing operating in an inviscid, incompressible flow. The velocity 

at infinity, along with the density, is taken as the reference. The wing is also assumed 
to have no thickness and a small camber ratio, so that the linearized theory can be 
applied. The coordinate system (OXYZ) is chosen so that the OX-axis corresponds to 
the downstream direction, and the XOY-plane matches the mean surface of the wing. 
The projected surface of the wing on plane-XOY is called S and the wake is called C. 

Let @ be the perturbation potential of the flow, s(X, Y) the camber slope and a(Y)  
the incidence of section Y. The PDE formulation of the problem is classical, and may 
be written as follows : 

A@ = 0, 

= O  on Z, a@ 
ax - 

_ -  - s(X, Y) -a(Y) on S ,  
a# 
az 
1V#1 < 00 

@ P O O .  

at the trailing edge, 
m 

This system may be resolved by means of a Green function, and it reduces to:  

I@' dEdY for all M ( X ,  Y) on S ,  
4R 

where a,(X, Y) = s ( X ,  Y ) -a (Y)  and the function [@I is the potential jump across 
surfaces S and C. FP before the integral signs implies the finite part in the Hadamard 
sense (see Hadamard 1932). The integration on the wake surface can be eliminated 
by integrating by parts with respect to the variable s" (see Ashley & Landhal 1965, 
$7.3 for details). Thus, (2) is simplified as follows: 

a,(X, Y) = -FPJJsW 1 
1 

4'IF a= ( Y - Y ) ~  
X-8 ] d S d Y  for all M(X, Y) on S.  (3) 

([X-Ey+[Y- !q"i 
The E-derivative of the potential jump is also known as the jump of the acceleration 
potential; it will be denoted y ( 8 ,  Y). At this point, the problem consists of inverting 
the integral equation, that is, the unknown function y(E,  Y )  has to be expressed as an 
explicit function of a,(X, Y). The modern, industrial way of treating this kind of 
problem is to cut S into small panels and satisfy the flow tangency condition at 
control points on the panels. This procedure leads to a linear system of equations 
which is easy to invert. However efficient this numerical technique may be, we 
believe that the analytical approach is useful for gaining new insight into the 
physical phenomena. In order to sort out the main flow characteristics we shall try 
to find an asymptotic solution of (3). 

The lifting surface is assumed to be such that the ratio of the span lengthscale B 
to the chord lengthscale C is much greater than unity. This ratio is called the aspect 
ratio, A .  The spanwise mean geometry of the wing is modelled by a smooth line L (see 
figure 1) whose equation is: 

X ,  = Bx,(Y) for all M,(X,, Y) on L,  (4) 
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where function xo(Y) is assumed to be of order one. It is convenient to take L as a 
reference line in the streamwise direction, hence, the following new set of coordinates 
is defined : 

(5 )  I x = Cz+Bz,(y), 

E = CLg+BZ,($), 
Y = By,  

Y = B$. 

The line L is assumed to be smooth in the sense that, over the span, the function zo(y) 
has a t  least two derivatives which are of order one. Hence the non-dimensional radius 
of curvature is well defined over the span and is of order one. With the new 
coordinate system, (3) takes the form : 

3. Asymptotic expansion of downwash 
At this stage, i t  is interesting to notice that the variable (2- 6) A-’ is of order A-’ 

whereas xo(y) -z0(@) and y- @ are of order one. As a consequence, (z-() A-l is much 
smaller, in the asymptotic sense, than the two other quantities. Therefore, i t  is 
relevant to  look for an asymptotic expansion of the spanwise integral with respect to 
the small quantity (s-() K1; let us change the name of this small quantity and call 
it e. Now, the problem consists of finding an asymptotic expansion of I ( € )  : 
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where %y(f ,  $) is defined by: 

% Y ( f ,  4 )  = ( w l - C l ( * ) l  -H[f-ct(*)l) Y ( f 3  $1. (8) 
H[5]  is the Heaviside function, and cI(@) and ct($) are the leading-edge and the 
trailing-edge locations. The integration is performed along paths where 6 is constant ; 
these [-lines are parallel to L. The method for finding the expansion with respect to 
the asymptotic sequence {$In (e ) }  is given in the Appendix A. The proposed method 
is systematic and comes from a general study (Guermond 1987, 1988). Calculations 
are rather simple, since they consist of an application of a general formula (A 3). The 
asymptotic expansion of I ( € )  is carried out up to o(1). The result is: 

where a[$] is the Dirac function. r ( @ )  is the local radius of curvature of the line L,  
and A($)  is the angle between the local tangent of L at Ma and direction Y'OY (see 
figure 1) .  

The next step consists of integrating I (€ )  with respect to 5. The only slight difficulty 
in performing this integration is due to the term which contains the derivative with 
respect to @. For this term, the integration along the chord may be considered as 
being carried out on the interval [cl($)+S,ct(+)-S], where 6 is a small positive 
quantity which converges to zero. In general terms, the following relation can be 
shown for all integrable function f ( f )  : 

After performing the integration of I ( € )  along the chordwise direction, the expansion 
of ao(s ,y )  can be evaluated up to o(A-l). Before going through the details of the 
expansion, it can be written as follows: 

The result is presented as a sum of three different terms because each of them can 
be given a precise interpretation. The first one has the form: 

where F($) is the circulation at spanwise location $: 
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The downwash V(M,,) may easily be interpreted within the classical lifting-line 
context as defined by Van Dyke. Actually, the lifting-surface model would degenerate 
into the outer lifting-line model if y(6, @) were such that 

r(599) = %I W)' (14) 
where 6 is the Dirac function. Hence, if the lifting surface S were replaced by Van 
Dyke's outer model: the lifting line whose shape matches L and whose strength is 
r(y), then V(Mo) would be the finite part of the downwash that the lifting line would 
induce on itself a t  Mo. I n  other words, it would be the downwash induced a t  Mo by 
the sheet of vortices extending downstream from L,  minus the infinite contribution 
of the infinitesimal bound vortex along with its trailers, on which M ,  is located. 
This is the only downwash that would be recovered if the lifting line were straight 
and perpendicular to the stream. It is shown in the last section of this paper that this 
downwash is the one to be used to calculate the induced drag. This term comes from 
the outer contribution of (7), and can be recovered by setting E to zero. 

The last two terms of (1 1) come from the inner contribution of (7). The second term 
has the form: 

In Van Dyke's lifting-line context, the downwash in question would reduce to: 

+l-tan'(A)-ln[-]]. 2 (16) 
cos2 ( A )  

In  this form it  is easy to recognize that this term is the asymptotic expansion of the 
velocity induced a t  M by the vortex ring whose strength is r(y) and whose local 
curvature matches that of the lifting line a t  Mo. The presence of logarithmic terms 
explains why Prandtl found it impossible to extend his simplified model to curved 
wings. The logarithmic behaviour is also responsible for producing the non- 
homogeneous Laplace equation encountered by previous MAE treatments of the 
problem (see Cheng 1978; Cheng & Murillo 1984). 

The last significant term of (1 1) takes the following form : 

The dot above r signifies the derivative with respect to y. In  the lifting-line context 
the downwash would be written : 

In  this form the downwash can be interpreted as the velocity induced at M by a semi- 
infinite sheet of trailing vortices, whose straight and inclined upstream boundary 
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matches the local tangent of L at Mo and whose strength is - f( y)/A. This downwash 
also has a logarithmic behaviour. 

Indeed, the approach described above is very similar to the MAE procedure which 
consists of looking for the inner behaviour of the outer expression of the downwash 
(see Van Dyke 1964; Cheng 1978; Cheng & Murillo 1984). The advantage of the 
present method, however, is that the lifting surface is not degenerated into a lifting 
line; as a result, no fundamental information is lost. Owing to this important fact, 
no matching problems are encountered. 

The asymptotic expansion of I ( € )  has been restricted to o(A-'), but the method 
described in Appendix A would easily give higher-order terms. 

4. Asymptotic solution 
In this section, it is shown that (11) can be asymptotically solved. From 

expansions (l2), (15) and (17), it is evident that y(z,y)  and r(y)  have to be 
approximated by : 

(19) 

(20) 
After substituting (19) and (20) into (l l) ,  the following set of integral equations 

Y(Z, Y) = YO(", Y) +A-l In (A-1) y1(-z, y) +A-'yz(x, y) +o(A-'), 
T(y) = To(y) +A-'ln (A-l)  r,(y) +A-l T2(y) +o(A-l) .  

results : 

Wo(Mo) is the downwash such that 

The system of equations is triangular, therefore it can be progressively solved from 
the top to the bottom. Each equation is of the Carleman type. This kind of integral 
equation is very classical in two-dimensional lifting problems. If the right-hand side 
of the ith equation is denoted - at(x, y), then the Kutta condition a t  the trailing edge 
along with the imposed square-root behaviour of yt(s, y) at  the leading edge yields : 

and the sectional circulation T,(y) satisfies : 
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Even though the recurrent character of the present system of equations is a feature 
of regular perturbation problems, the present problem is actually a singular 
perturbation problem as discovered by Van Dyke (1964). The singular character of 
the perturbation 1/A appeared when the integral I ( € )  was expanded with respect to 
E (see Appendix A). The difficulties due to the singular character of E have been 
reduced out by using the finite part concept. 

In principle, there is no limit in finding higher-order solutions, since at each 
approximation order the right-hand side of the Carleman equation is a function of 
previous approximations. An example of higher-order derivation has been given in 
Guermond (1987) for the case of an unswept wing. In this particular case, the author 
showed that, for powers i and j such that 1 < j < i - 2, corrections of order E$ I d  ( E )  

appear. In the present case such terms will appear when 1 < j  < i. 
For the first three orders, interesting simplifications occur when calculating the 

sectional circulation. The final result may be written in the from: 

1 +sin ( A )  2 
27K (29) 

where aol(y)  is the classical, camber induced, zero lift incidence. K is the distance of 
Mo from the leading edge expressed as a fraction of the chord ; this number may not 
necessarily be a constant along the span. .M,,(N,) is the moment about M, of the two- 
dimensional distribution yo(x, y), that is : 

For wings with no sectional camber slope, moment A o ( M o )  is given by: 

This moment is zero when M ,  is located at  the quarter-chord point. It is interesting 
to notice that when K = the lifting-line representation of the downwash, (16) and 
(18), produces the same approximation of the circulation (27), (28), (29) as the lifting- 
surface representation. 

At  this stage, it is interesting to make some physical interpretations of our results. 
From (27), (28) and (29) it  is evident that T(y) may be written as follows: 
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where w ( y )  is given by : 

W ( y )  may be interpreted as being the effective downwash in Prandtl's sense. It 
combines all the three-dimensional effects in one, which is equivalent to a sectional 
modification of the flow incidence at infinity. From this equation some classical 
effects induced by sweep and curvature can be qualitatively predicted. At  the centre 
of a symmetric curved wing, the term To(y) In [ c ( y ) / A ] / r ( y )  is dominant in the limiting 
case of a very high aspect-ratio wing. If the curvature opens downstream, this term 
produces a negative 'effective ' downwash ; consequently, it tends to decrease the 
actual loading at  the centre. The effect is opposite if the curvature opens upstream. 
Near the tips, the term f ( y )  sin ( A )  In [c(y)/A] is dominant and produces positive 
downwash at both tips if the wing is swept backward; thus this term tends to 
increase the actual loading at  the tips. Therefore, both sweep and curvature shift 
loading from the centre towards the tips for backward sweep, and from the tips 
towards the centre for forward sweep. Additional arguments concerning the effects 
of the logarithmic downwash may be found in Cheng & Murillo (1984). 

A question which may be raised at this stage concerns the choice of the function 
K .  In other words, where should the mean line be located on the wing? In order to 
answer this question, let us consider a function E which represents either y(z, y )  or 
r ( y ) ,  or whatever relevant function for which an asymptotic expansion is sought. Let 
E l ,  E ,  be the two asymptotic expansions of E corresponding to two different mean 
line locations, K ,  and K, .  As long as both K ,  and K2 are of order one and have two 
smooth derivatives of order one, then El and E ,  satisfy equations like (19) or (20), 
that is : E = E, + o(A-'), (34) 

(35) E = E,  + o(A-l). 

Hence, E, differs from E, by terms of o(A-'). As a result, asymptotic expansions El 
and E ,  depend in an insignificant way, in the asymptotic sense, on particular choices 
of functions K ,  and K, .  The same reasoning can be carried out at  higher- 
approximation orders if the corresponding derivatives of functions K ,  and K ,  are still 
of order one. 

5. Comments on downwash Wo(Mo) 
In this section, the downwash Wo(Mo) is given an explicit form by the calculation 

of the finite part integral. If both line L and circulation T',(@) have simple analytical 
expressions, then the downwash can be analytically determined ; in other cases, 
Wo(N0) has to be numerically evaluated. In subsequent considerations, it is assumed 
that the analytical work is far too complicated to  be easily carried out; it is shown 
how numerical calculations can be undertaken. 
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In order to simplify subsequent mathematical expressions, an auxiliary function 
fJ$) is defined such as: 

As long as the line L is smooth, fJ$) is regular and has a t  least one derivative over 
the wing's span. It may easily be verified that : 

f,(Y) = sin [ 4 Y ) I ,  (37) 

One simple way to deal with the finite part concept is to regularize the behaviour 
of the integrand of (24). Let us subtract and add the first two terms of the Taylor 
series expansion of roc$) as follows: 

The first integral is regular and can be calculated using any simple, numerical scheme 
such as the trapezoidal rule or Simpson's rule. The other two integrals are still 
defined only in the finite part sense. 

Let us assume that the span lengthscale B and the origin of the coordinate system 
have been chosen so that the spanwise coordinate y varies between - 1 and + 1. 
Then, the first finite part integral of the right-hand side of (39) may be regularized 
as follows: 

' f y ( $ ) - f Y ( ~ ) - ( $ - ~ ) f y ( ~ )  d$, (40) 

The only integral appearing in the right-hand side is regular and can be numerically 
evaluated without any difficulty. The regularization procedure can be re-applied to 
the second finite part integral of (39); the result is: 

6. Examples and comparisons 

illustrate the method. 
In this section, some analytical and numerical results are presented in order to 

First, the circulation distribution is tested on a flat-plate, elliptical wing with a 
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straight mid-chord line inclined to the flow at angle A .  The aspect ratio is defined so 
that the non-dimensional chord-length is written as follows : 

(1 - y”)”. 
2 

c(y) = cos(/l) 
In this particular case, the analytical expression of the downwash Wo(Mo) is quite 
easy to obtain. In terms of sectional circulation the final result can be put into the 

-Y[ln[i+sin(n)l-[1--sin(n)l1n1.cos(~)11+o(~-l). A (43) 

Function K has been assumed to be constant. This result is quite classical, and it has 
been shown to be in full agreement with numerical results obtained from panel 
methods (see Cheng 1978). The total lift coefficient has the following simple form : 

In  order to illustrate the effects of the curvature, the asymptotic solution has been 
tested on an elliptic flat-plate wing with a parabolic mid-chord line. The equation of 
the mid-line is zo(y) = 0 . 2 ~ ~  and the ratio of the span to the mean chord-length is 
12.73. In  figure 2 the distribution of the circulation with respect to the spanwise 
location is presented for K = 4. The triangles are for the results obtained with a panel 
method devised at MIT. The agreement of the asymptotic theory (squares) with 
lifting-surface results is quite uniform. The asymptotic theory presents the expected 
improvement from the strip theory (line). Different locations of the lifting line on the 

1.2 

1 .o 

0.8 
c 
.- 
..d 4 0.6 
2 
u .- 

0.4 

0.2 

0 

17 

A R  = 12.73. SweeD = 0.2 

- Two-dimensional theory 
tl Lifting line 

Lifting surface 

t 
0.2 0.4 0.6 0.8 

Spanwise location, y 

1 .o 1.2 

FIQURE 2. Circulation distribution on a parabolic wing. 
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FIGURE 3. Lift coefficient as a function of sweep and A 

chord have been tried. The results (not reported here) showed that, as expected, 
parameter K has little effect on the results as long as the aspect ratio is asymptotically 
large. 

In order to test both the influence of curvature and aspect ratio on total lift, 
calculations have been carried out on an elliptical, flat plate wing with a parabolic 
mid-chord line whose equation is: z,(y) = Sweep x y2. The aspect ratio is defined as 
the ratio of the total span to the mean chord-length. In figure 3 lifting-line results are 
compared with lifting-surface results for three different values of the Sweep 
parameter. Coefficient K has been set to g. The figures clearly demonstrate that the 
curvature effects are uniformly predicted by the asymptotic theory. Furthermore, as 
already observed by Van Dyke, the first-order theory diverges for low aspect-ratio 
wings (see Van Dyke 1964). 

7. Side-force paradox 
In this last section the forces acting on the wing are considered. The evident way 

to calculate these forces is to integrate the pressure on the surface of the wing, then 
add the leading-edge suction. We assume that these operations do not pose any 
difficulty and shall concentrate our efforts on the lifting-line aspect of the problem. 
We shall show that it is possible to recover the set of forces acting on the wing using 
only the outer model of the lifting line. 
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As long as the wake geometry is frozen and planar, the circulation distribution 
being given, it is easy to prove, by applying the momentum theorem in the Trefftz 
plane, that the three components of the resultant force are independent of the wing 
shape, and consequently of the lifting-line geometry associated with it. Therefore the 
lift, drag, and side force are expressed by the well-known formulae : 

F, = 0. (47) 

Another classical procedure for calculating these forces is to apply Joukowski's 
theorem on the wing. This procedure applied to the outer lifting-line model gives 
both the expected lift (45) and drag (46). This result is straightforward for the lift, 
but needs some explanation for the drag. In order to calculate the induced drag, we 
need the value of the downwash induced on each infinitesimal element of the lifting 
line minus the (infinite) contribution of this element on itself. This required 
downwash is exactly &(No) introduced in (12). Then, according to this result and 
Joukowski's rule, the drag is: 

The expected result is obtained after integrating by parts on the span with respect 
to 11,. Note that, to demonstrate this result, we have used the fact that the integral 
of an antisymmetric function over a square domain is zero. 

The calculation of the side force is a little more complicated because we face a kind 
of paradox. Let us illustrate this with a straight, yawed lifting line. Let A be the 
angle between the mean line and the flow direction. If we apply Joukowski's theorem 
on it, then a side force proportional to the drag and to tan(A) occurs. This 
paradoxical result means that the outer model of the lifting-line approximation is 
partially inconsistent. One way to recover consistency is to admit that a fictitious 
side force is produced in the wake. In order to demonstrate this surprising result, let 
us consider a semi-infinite strip of trailing vortices of width dy. Then, let us calculate 
the induced velocity along this strip and apply Joukowski's rule. The force per unit 
length acting on the semi-infinite strip is: 

The integral in the finite part sense on t is easy to evaluate; the result is: 

This force is parallel to the Y'OY axis. It can be interpreted as the force which would 
act on the longitudinal bound vortices of each y-section of the wing, if this latter were 

17-2 
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correctly modelled as a lifting surface. The total force is recovered by performing an 
integration over the span and an integration by parts with respect to y, with the 
following result : 

In this formula, it is now easy to see th6t F,,,,, is exactly opposite to the y- 
component of the force acting on the lifting line, which is the integral of the cross 
product of &(No) with the local vorticity T(y) (ds,, dy)T. Thus, the side-force 
‘paradox’ is resolved if the fictitious side force, produced in the frozen wake, is 
included in the balance of the forces acting on the wing. 

8. Conclusions 
In this paper, we have generalized Kida & Miyai’s lifting-line theory to curved and 

swept wings. By starting from the complete lifting-surface integral equation and by 
using the finite part integral concept, we have come up with a Carleman type integral 
equation at each approximation order. The asymptotic solution has been given both 
in terms of pressure jump and sectional circulation up to o(A-’). It has been shown 
that the asymptotic solution depends in an insignificant way on the particular choice 
of the mean line location. 

The new model is very simple and involves relatively little algebra compared with 
other MAE approaches. Higher-approximation orders are available by extending the 
expansion of I ( € )  (see equation (7)).  Furthermore, the simplicity of this model allows 
simple extensions to more complicated geometries like skewed marine propellers or 
windmills. The extension of this model to unsteady flow is under way and almost 
completed. 

The basic effects on the flow induced by yaw-angle and curvature can easily be 
recovered from the present solution. Comparisons between this theory and panel 
methods reveal excellent agreements when the aspect ratio is high and the local 
curvature moderate. In terms of forces, the outer model of the lifting line, in the sense 
of MAE, gives consistent lift and induced drag, but produces a side force which 
cancels out if we admit the existence of a fictitious side force in the wake, which would 
really act on the wing if either the inner model were re-introduced or the initial 
lifting-surface model were retained. 

The author wishes to express his sincere thanks to Professors J. E. Kerwin and 
P. Sciavounos for helpful discussions and for their interest in this problem. B. King 
and A. Sellier are also thanked for their comments and the help they provided during 
the preparation of the manuscript. This study has been supported by the French 
Navy, while the author was visiting the Department of Ocean Engineering at  MIT. 

Appendix A 

expansion with respect to 8 of integrals such as: 
In this Appendix we shall give a general solution for finding an asymptotic 

r 

J D  
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D is an open real interval which contains zero: the integral is defined by its finite 
part. Functions f(t) and g( t )  are integrable on D and have derivatives of all orders 
throughout a neighbourhood of zero; furthermore, g(z) is assumed to be zero at  
t = 0. Kernel K is assumed to be homogeneous of order p, which is to say: 

(A 2) 
where function #(a) is either the sign function or the unit function ; p is a real and 
is called the homogeneity order of the kernel. K(t ,  g ( t ) ,  1) is assumed to be a smooth 
function throughout R*. A t  t = O,K(t, g( t ) ,  1) may be infinite, but must have the same 
asymptotic behaviour, with respect to t ,  on both sides of zero. K(t ,  g( t ) ,  a) has partial 
derivatives of all orders, with respect to a, throughout a neighbourhood of zero. These 
conditions are sufficient for applying general results which have been demonstrated 
in Guermond (1987, 1988). The important result is that I (€ )  may be approximated 
by : 

K(at, ag(t) ae) = [aS(a)]@K(t, g(t ) ,  a) for all a in R, 

d J 

4s) = c FP f(t) wqt, g( t ) ,  0) d t y  

C C A E  + x -  
(-0 i !  1-0 m-0 m !  

I-0 ID 
J - C f l - l f C f  (0) J-MI-1 J-rBlfZ-1 ff 

where aFK is for the uth partial derivative of K with respect to the lth variable. R(P) 
is either equal to one if p is integer, or zero if p is not integer. The bracket signs 
around imply the integer part of p. Coefficients Hilm are defined by: 

Note that the finite part concept is fundamental to the present formulation, see 
Appendix B for additional arguments on this point. 

In the present case, the kernel K is defined by: 

where variable t and function g ( t )  are linked to the spanwise location and the lifting- 
line geometry by : @ 6) 

g ( t )  = zo(y)--Zo(@). (A 7) 

t = y-@, 

As a result, formula (A 3) must be applied up to order J = 0 with /I = -2 and 
S( t )  = sgn ( t ) .  Subsequent calculations present no difficulties. 

Appendix B 
The finite part integral concept was introduced by Hadamard (1932) when he was 

working on his extensive theory of the Cauchy problem. Some of the relevant aspects 
of Hadamard's finite part concept are summerized here. 
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Let a be a positive real and F(x)  be a function locally integrable on the interval 
[0, a], Furthermore, F(x)  is assumed to be singular at  the origin such that it may be 
decomposed into the sum of a function G(x),  locally integrable throughout the entire 
interval [0, a] ,  and a generalized polynomial P(z) such that : 

The exponents pr  are less than or equal to minus one. Under these hypotheses, it is 
possible to prove the following identity for all small, positive real E :  

l F ( x )  d s  = FP(E) -I"(.), (B 2) 

P(E) is the indefinite integral of P(z)  evaluated at e ;  it is also a generalized 
polynomial with respect to E. I"(€) diverges to infinity when E tends to zero; for this 
reason it is called the infinite part of the integral. FP(E) is composed of all the terms 
which remain finite when E tends to zero. The limit of FP(e), when E tends to zero, 
is called the finite part of the integral; it is denoted FPkF(x )dx .  Put in 
mathematical terms, this definition yields : 

FP F(x) dx = limFP(e). I E'O 

A similar definition can be set for functions which are not integrable in the vicinity 
of infinity. This case is treated by the change of variables: x = l/t. 

From these definitions some interesting properties can be derived. Let $(x) be a 
function which is smooth in the vicinity of the origin and n be a strictly positive 
integer, then it may be easily verified that 

(B 4) 
If instead of an integer, n, the exponent of x is a real number, A,  greater than one, then 
an equivalent result can be obtained. The term In (E), however, has to be replaced by 
€k-l+r\ /(k + 1 - A ) ,  where k is the integer part of h - 1. Result (B 4) hints that the finite 
part concept is a suitable tool for evaluating asymptotic expansions of integrals (see 
Guermond (1987, 1988)). In order to illustrate this idea, some examples are given. 

Indeed, (A 3), which constitutes the main result of Appendix A, can be obtained 
in a very classical way using the MAE technique. For this purpose, a small positive 
quantity, 6, is defined such that 

(B 5) 6 = o(l), 

E = o(6). (B 6) 
Then, the domain of integration is subdivided into two domains such that : 

I(€) = 1 mm, d t ) ,  €1 dt+ l ( t ) K ( t ,  m, €1 dt. (B 7)  
D-[-U,+6] 

The first integral is called the outer contribution and the second one is called the 
inner contribution. In the first integral, E is much smaller than variable t throughout 
the domain of integration, hence, kernel K can be uniformly approximated by its 



Generalized lifting-line theory for curved and swept wings 513 

Taylor expansion with respect to E .  Then it is a simple matter of algebra to show that 
the outer contribution can be put into the form 

€5 J I D-[-S.+S] 1-0 s, 3 .  
f(t)K(t, g(t), 4 dt = x FP f(t) %m g(% 0) dtT+P(S) + 0 ( 4 ,  (B 8) 

where P(8)  is a diverging generalized polynomial of the form, (B 1). 
In the integral representing the inner contribution, variable t is of order E 

throughout the domain of integration. Variable t is conveniently changed into d a n d  
functions f(Et"), g(&), II(& g(Ef), €0 are replaced by their Taylor expansion with respect 
to E .  After some calculation, the inner contribution yields the second part of the 
right-hand side of (A 3) minus the diverging polynomial P(S) together with terms 
which are o(sJ) .  Hence the final result is obtained. 

In order to test the present technique, the reader can apply it on the following 
simple example. Let a be a negative real and b be a positive real. Let $(x) be a smooth 
function on interval [a,b], then it is easy to verify the following asymptotic 
expansion for small values of 8 :  
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